On Similarity of Differential Capacity and Capillary Pressure Fractal Dimensions for Characterizing Shajara Reservoirs of the Permo-Carboniferous Shajara Formation, Saudi Arabia

*Khalid Elyas Mohamed Elameen AlKhidir
*Professor, Department of Petroleum and Natural Gas Engineering, College of Engineering, King Saud University, Saudi Arabia

Abstract
The quality of a reservoir can be described in details by the application of differential capacity. The objective of this research is to calculate fractal dimension from the relationship among differential capacity, maximum differential capacity and wetting phase saturation and to confirm it by the fractal dimension derived from the relationship among capillary pressure and wetting phase saturation. In this research, porosity was measured on real collected sandstone samples and permeability was calculated theoretically from capillary pressure profile measured by mercury intrusion techniques. Two equations for calculating the fractal dimensions have been used. The first one describes the functional relationship between wetting phase saturation, differential capacity, maximum difference capacity and fractal dimension. The second equation implies to the wetting phase saturation as a function of capillary pressure and the fractal dimension. Two procedures for obtaining the fractal dimension have been developed. The first procedure was done by plotting the logarithm of the ratio between differential capacity and maximum differential capacity versus logarithm wetting phase saturation. The slope of the first procedure = 3- Df (fractal dimension). The second procedure for obtaining the fractal dimension was completed by plotting the logarithm of capillary pressure versus the logarithm of wetting phase saturation. The slope of the second procedure = Df -3. On the basis of the obtained results of the constructed stratigraphic column and the acquired values of the fractal dimension, the sandstones of the Shajara reservoirs of the Shajara Formation were divided here into three units. The gained units from bottom to top are: Lower Shajara differential capacity Fractal Dimension Unit, Middle Shajara differential capacity Fractal dimension Unit, and Upper Shajara differential capacity Fractal Dimension Unit. The results show similarity between differential capacity fractal dimension and capillary pressure fractal dimension. It was also noted that samples with wide range of pore radius were characterized by high values of fractal dimension due to an increase in their flow capacity. In our case, and as conclusions the higher the fractal dimension, the higher the permeability, the better the reservoir characteristics.

Keywords
Shajara Reservoirs; Shajara Formation; Differential Capacity Fractal Dimension; Capillary Pressure Fractal Dimension

Introduction
Capillary pressure is generally expressed as an aspect of the wetting phase saturation, according to the capillary pressure model [1]. The capillary pressure function was modified by Brooks RH and Corey AT [2] by applying a pore size distribution index (λ) as an exponent on the ratio of bubble pressure to capillary pressure. According to their results, a linear relationship exists between pressure and effective saturation on a log-log plot. This mathematical relationship has been named the...
Brooks-Corey model (B-C model). A model that predicts the hydraulic conductivity for unsaturated soil-water retention curve and conductivity saturation was derived by Mualem YA [3]. Later, based on Mualem’s formula, Van Genuchten MTh [4] described a relatively simple expression for the hydraulic conductivity of unsaturated soils. The Van Genuchten model (V-G model) contained three independent parameters, which can be obtained by fitting experimental data. A function to estimate the relationship between water saturation and capillary pressure in porous media was proposed by Oostrom M and Lenhard RJ [5]. This function is test data of sandstone rocks and carbonate rocks with high permeability were described as a new capillary pressure expression [6].

A fractal approach can be used to model the pc measured with mercury intrusion in Geysers grey wacke rock; however, the B-C model could not be used, according to a study by Li [7]. Subsequently, a theoretical analysis using fractal geometry was conducted by Li K and Horne RN [8] to deduce the B-C model, which has always been considered as an empirical model. Subsequently, fractal modeling of porous media was used to develop a more generalized capillary pressure model was studied by Li K [9]. With the new model [9] also evaluated the heterogeneity of rocks [10]. Physical parameters of soils in term of fractal dimension were studied by Globus AM [11]. An increase of volumetric water content with increasing hydraulic conductivity was reported by Alfaro Soto MA, et al. [12]. Bimodal Pore Size behavior of the Shajara Formation reservoirs of the permo-carboniferous Unayzah group was studied [13]. Subdivision of the Shajara reservoirs into three units based on thermodynamic fractal dimension approach and 3-D fractal geometry model of mercury intrusion technique was reported by Al-Khidir K, et al. [14]. The work published by Al-Khidir, et al. [14] was cited as Geoscience; New Finding reported from King Saud University Describe advances in Geoscience. Science Letter (Oct 25, 2013): 359. Al-khidir, et al. [15]. An increase of bubble pressure fractal dimension and pressure head fractal dimension with decreasing pore size distribution index and fitting parameters m*n due to possibility of having inter connected channels was proved by Al-khidir KEME [16]. An increase of fractal dimension with increasing permeability, relaxation time of induced polarization, due to an increase in pore connectivity was confirmed by Alkhidir KEME [17].

Materials and Methods

Porosity was measured on collected sandstone samples and permeability was calculated from the measured capillary pressure by mercury intrusion techniques. Two procedures for obtaining the fractal dimension have been developed. The first procedure was concluded by plotting the logarithm of the ratio between differential capacity and maximum differential capacity versus logarithm wetting phase saturation. The slope of the first procedure = 3- Df (fractal dimension). The second procedure for obtaining the fractal dimension was resolved by plotting the logarithm of capillary pressure versus the logarithm of wetting phase saturation. The slope of the second procedure = Df -3.

The differential capacity can be scaled as

$$Sw = \frac{1}{C^2} \left(\frac{C}{C_{max}} \right)^{3-Df}$$

Where Sw the water saturation, C the differential capacity in square meter, Cmax the maximum differential capacity in square meter, and Df the fractal dimension.

Equation 1 can be proofed from

$$\epsilon_f = \frac{Q}{V \times L}$$

Where \(\epsilon_f\) the permittivity of the fluid in faraday / meter, Q the electric charge in coulomb, V the electric potential in volt, and L the length in meter.

The electric charge can be scaled as

$$Q = \frac{\text{vol}}{C_s}$$

Where Q the electric charge in coulomb, vol the volume of the fluid in cubic meter, and \(C_s\) the streaming potential coefficient in volt / pascal.

Insert equation 3 into equation 2

$$\epsilon_f = \frac{\text{vol}}{C_s \times V \times L}$$

The volume can be scaled as
\[\text{Vol} = C \times H \] (5)

Where vol the volume of the fluid in cubic meter, C the differential capacity in square meter, and H the pressure head in meter.

Insert equation 5 into equation 4
\[\varepsilon_f = \frac{C \times H}{C_s \times V \times L} \] (6)

The streaming potential coefficient can be scaled as
\[C_s = \frac{\text{reff}^2 \times C_e}{8 \times \sigma_f \times \eta_f} \] (7)

Where C_s the streaming potential coefficient in volt / pascal, \(\text{reff} \) the effective pore radius in meter, \(C_e \) the electro osmosis coefficient in pascal / volt, \(\sigma_f \) the fluid conductivity in Siemens / meter, and \(\eta_f \) the fluid viscosity in pascal * second.

Insert equation 7 into equation 6
\[\varepsilon_f = \frac{C \times H \times 8 \times \sigma_f \times \eta_f}{\text{reff}^2 \times C_e \times V \times L} \] (8)

If the pore radius r in meter is introduced equation 8 will become
\[r^2 = \frac{C \times H \times 8 \times \sigma_f \times \eta_f}{\varepsilon_f \times C_e \times V \times L} \] (9)

The maximum pore radius can be scaled as
\[r_{max}^2 = \frac{C_{max} \times H \times 8 \times \sigma_f \times \eta_f}{\varepsilon_f \times C_e \times V \times L} \] (10)

Divide equation 9 by equation 10
\[\frac{r^2}{r_{max}^2} = \frac{\frac{C \times H \times 8 \times \sigma_f \times \eta_f}{\varepsilon_f \times C_e \times V \times L}}{\frac{C_{max} \times H \times 8 \times \sigma_f \times \eta_f}{\varepsilon_f \times C_e \times V \times L}} \] (11)

Equation 11 after simplification will become
\[\frac{r^2}{r_{max}^2} = \left(\frac{C}{C_{max}}\right) \] (12)

Take the square root of equation 12
\[\sqrt{\frac{r^2}{r_{max}^2}} = \sqrt{\left(\frac{C}{C_{max}}\right)} \] (13)

Equation 13 after simplification will become
\[\frac{r}{r_{max}} = \sqrt{\frac{1}{\frac{C}{C_{max}}} \times \frac{1}{r_{max}}} \] (14)

Take the logarithm of equation 14
\[\log \left(\frac{r}{r_{max}}\right) = \log \left(\frac{1}{\frac{C}{C_{max}}} \times \frac{1}{r_{max}}\right) \] (15)

But, \(\log \left(\frac{r}{r_{max}}\right) = \log (3 - D_f) \) (16)

Insert equation 16 into equation 15
\[\log (3 - D_f) = \log \left(\frac{1}{\frac{C}{C_{max}}} \times \frac{1}{r_{max}}\right) \] (17)

Equation 17 after log removal will become
\[Sw = \frac{1}{\frac{C}{C_{max}}} \times \frac{1}{r_{max}} \] (18)

Equation 18 the proof of equation 1 which relates the water saturation, differential capacity, maximum differential capacity, and the fractal dimension.

The capillary pressure can be scaled as
\[Sw = [D_f - 3] \times P_c + \text{constant} \] (19)

Results and Discussion

Based on field observation the Shajara Reservoirs of the Permo-Carboniferous Shajara Formation were divided here into three units as described in (Figure 1). These units from bottom to top are: Lower, Middle and Upper Shajara Reservoir. Their developed results of differential capacity...
and capillary fractal dimensions are presented in (Table 1). The results display equalities between differential capacity fractal dimension and capillary pressure fractal dimension. A maximum fractal dimension value of about 2.7872 was informed from sample SJ13 as validated in (Table 1). But, a minimum fractal dimension value 2.4379 assigns to sample SJ3 from the Lower Shajara Reservoir as verified in (Table 1). The differential capacity and capillary pressure fractal dimensions were noticed to increase with increasing permeability due to the possibility of having interconnected channels as confirmed in (Table 1). Regarding the Lower Shajara Reservoir, it is represented by six sandstone samples as shown in (Figure 1), four of which marked as SJ1, SJ2, SJ3, and SJ4 were taken for capillary pressure measurements to evaluate the fractal dimension. Their positive slopes of the first procedure (log ratio of differential capacity to maximum differential capacity versus log water saturation (Sw) and negative slopes of the second procedure (log capillary pressure (Pc) versus log water saturation (Sw) were designated in (Figures 2, 3, 4, 5 and Table 1). Their differential capacity fractal dimension and capillary pressure fractal dimension values are displayed in Table 1. As we proceed from sample SJ2 to SJ3 a remarkable reduction in permeability from 1955 md to 56 md was observed due to compaction which reveals change in differential capacity fractal dimension from 2.7748 to 2.4379 as explained in (Table 1). Such extreme change in permeability can account for heterogeneity which is a key parameter in reservoir quality assessment. Once more, an increase in grain size and permeability was informed from sample SJ4 whose differential capacity fractal dimension and capillary pressure fractal dimension was found to be 2.6843 as illustrated in (Table 1).

Figure 1: Surface Type Section of the Shajara Reservoirs of the Permo-Carboniferous Shajara Formation, Latitude 26 52 17.4, Longitude 43 36 18

<table>
<thead>
<tr>
<th>AGE</th>
<th>Fm.</th>
<th>Mbr.</th>
<th>unit</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late</td>
<td>Kuff</td>
<td></td>
<td></td>
<td>Limestone : Cream, dense, burrowed, thickness 6.50'</td>
</tr>
<tr>
<td>Permian</td>
<td></td>
<td></td>
<td></td>
<td>Sub-Kuff unconformity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mudstone : Yellow, thickness 17.7'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Light brown, cross-beded, course-grained, poorly sorted, porous,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>friable, thickness 6.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Yellow, medium-grained, very coarse-grained, poorly, moderately</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sorted, porous, friable, thickness 11.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mudstone : Yellow-green, thickness 11.8'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mudstone : Yellow, thickness 1.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mudstone : Brown, thickness 1.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Light brown, medium-grained, moderately sorted, porous, friable,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>thickness 3.0'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Medium brown, moderately well sorted, porous, friable, thickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Red, medium-grained, moderately well sorted, porous, friable,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>thickness 13.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : White with yellow spots, fine-grained, hard, thickness 2.0'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Lime, thickness 1.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : White, course-grained, very poorly sorted, thickness 4.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : White-pink, poorly sorted, thickness 1.6'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Yellow, medium-grained, well sorted, porous, friable, thickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : Red, medium-grained, well sorted, porous, friable, thickness 11.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sub-Unayzah unconformity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstone : White, fine-grained.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SJH Samples Collection</td>
</tr>
</tbody>
</table>
Figure 2: Log ($C^{1/2}/C_{\text{max}}^{1/2}$) & log P_c Versus log S_w for Sample SJ1

Figure 3: Log ($C^{1/2}/C_{\text{max}}^{1/2}$) & log P_c Versus log S_w for Sample SJ2

Figure 4: Log ($C^{1/2}/C_{\text{max}}^{1/2}$) & log P_c Versus log S_w for Sample SJ3
Concerning the Middle Shajara Reservoir, it is separated from Lower Shajara Reservoir by an unconformity surface as described in (Figure 1). It was signified by four samples, three of which named as SJ7, SJ8, and SJ9 were selected for fractal dimension determination as proved in (Table 1). Their positive and negative slopes of the first and second procedures were defined in (Figures 6, 7, 8 and Table 1) Furthermore, their differential capacity and capillary pressure fractal dimension shows equal values as presented in (Table 1) Likewise, their fractal dimension values are higher than those of sample SJ3 and SJ4 from the Lower Shajara Reservoir due to an increase in their permeability as identified in (Table 1). On the other hand, the Upper Shajara reservoir is separated from the Middle Shajara reservoir by yellow green mudstone as shown in (Figure 1). It is defined by three samples so called SJ11, SJ12, SJ13 as explained in (Table 1). Their positive slopes of the first procedure and negative slopes of the second procedure are displayed in (Figures 9, 10, 11 and Table 1). Also, their differential capacity fractal dimension and capillary pressure fractal dimension are also higher than those of sample SJ3 and SJ4 from the Lower Shajara Reservoir due to an increase in their permeability as testified in (Table 1). Global a plot of positive slope of

Table 1: Petrophysical Model showing the Three Shajara Reservoir Units with their Corresponding Values of Differential Capacity Fractal Dimension and Capillary Pressure Fractal Dimension

<table>
<thead>
<tr>
<th>Formation</th>
<th>Reservoir</th>
<th>Sample</th>
<th>Porosity %</th>
<th>k (md)</th>
<th>Positive Slope of the First Procedure Slope=3-Df</th>
<th>Negative Slope of the Second Procedure Slope=Df-3</th>
<th>Differential Capacity Fractal Dimension</th>
<th>Capillary Pressure Fractal Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permo-Carboniferous Shajara Formation</td>
<td>Upper Shajara Reservoir</td>
<td>SJ13</td>
<td>25</td>
<td>973</td>
<td>0.2128</td>
<td>-0.2128</td>
<td>2.7872</td>
<td>2.7872</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ12</td>
<td>28</td>
<td>1440</td>
<td>0.2141</td>
<td>-0.2141</td>
<td>2.7859</td>
<td>2.7859</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ11</td>
<td>36</td>
<td>1197</td>
<td>0.2414</td>
<td>-0.2414</td>
<td>2.7586</td>
<td>2.7586</td>
</tr>
<tr>
<td></td>
<td>Middle Shajara Reservoir</td>
<td>SJ9</td>
<td>31</td>
<td>1394</td>
<td>0.2214</td>
<td>-0.2214</td>
<td>2.7786</td>
<td>2.7786</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ8</td>
<td>32</td>
<td>1344</td>
<td>0.2248</td>
<td>-0.2248</td>
<td>2.7752</td>
<td>2.7752</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ7</td>
<td>35</td>
<td>1472</td>
<td>0.2317</td>
<td>-0.2317</td>
<td>2.7683</td>
<td>2.7683</td>
</tr>
<tr>
<td></td>
<td>Lower Shajara Reservoir</td>
<td>SJ4</td>
<td>30</td>
<td>176</td>
<td>0.3157</td>
<td>-0.3157</td>
<td>2.6843</td>
<td>2.6843</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ3</td>
<td>34</td>
<td>56</td>
<td>0.5621</td>
<td>-0.5621</td>
<td>2.4379</td>
<td>2.4379</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ2</td>
<td>35</td>
<td>1955</td>
<td>0.2252</td>
<td>-0.2252</td>
<td>2.7748</td>
<td>2.7748</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJ1</td>
<td>29</td>
<td>1680</td>
<td>0.2141</td>
<td>-0.2141</td>
<td>2.7859</td>
<td>2.7859</td>
</tr>
</tbody>
</table>

Figure 5: Log ($C_{1/2}/C_{max}^{1/2}$) & log P_c Versus log S_w for Sample SJ4
the first procedure versus negative slope of the second procedure delineates three reservoir zones of varying petrophysical characteristics as shown in Figure 12. These zones were also confirmed by plotting differential capacity fractal dimension versus capillary pressure fractal dimension as shown in Figure 13. Such variation in fractal dimensions can be used to explain heterogeneity which is a key parameter in reservoir quality assessment.

Figure 6: Log \((C^{1/2}/C_{max}^{1/2}) \) & log Pc Versus log Sw for Sample SJ7

Figure 7: Log \((C^{1/2}/C_{max}^{1/2}) \) & log Pc Versus log Sw for Sample SJ8
Figure 8: Log \((C^{1/2}/C_{\max}^{1/2})\) & log \(P_c\) Versus log \(S_w\) for Sample SJ9

Figure 9: Log \((C^{1/2}/C_{\max}^{1/2})\) & log \(P_c\) Versus log \(S_w\) for Sample SJ11

Figure 10: Log \((C^{1/2}/C_{\max}^{1/2})\) & log \(P_c\) Versus log \(S_w\) for Sample SJ12
Figure 11: Log \((C_{1/2}/C_{max}^{1/2}) \) & log Pc Versus log Sw for Sample SJ13

Figure 12: Positive Slope of the First Procedure Versus Negative Slope of the Second Procedure

Figure 13: Differential Capacity Fractal Dimension Versus Capillary Pressure Fractal Dimension

References